Eleostearic Acid inhibits breast cancer proliferation by means of an oxidation-dependent mechanism.
نویسندگان
چکیده
Eleostearic acid (alpha-ESA) is a conjugated linolenic acid that makes up approximately 60% of Momordica charantia (bitter melon) seed oil. Prior work found that water extract from bitter melon was able to inhibit breast cancer. Here, we investigated effects of alpha-ESA on both estrogen receptor (ER)-negative MDA-MB-231 (MDA-wt) and ER-positive MDA-ERalpha7 human breast cancer cells. We found that alpha-ESA inhibited proliferation of both MDA-wt and MDA-ERalpha7 cells, whereas conjugated linoleic acid had comparatively weak antiproliferative activity at 20 to 80 micromol/L concentrations. We also found that alpha-ESA (40 micromol/L) treatment led to apoptosis in the range of 70% to 90% for both cell lines, whereas conjugated linoleic acid (40 micromol/L) resulted in only 5% to 10% apoptosis, similar to results for control untreated cells. Addition of alpha-ESA also caused loss of mitochondrial membrane potential and translocation of apoptosis-inducing factor as well as endonuclease G from the mitochondria to the nucleus. Additionally, alpha-ESA caused a G(2)-M block in the cell cycle. We also investigated the potential for lipid peroxidation to play a role in the inhibitory action of alpha-ESA. We found that when the breast cancer cells were treated with alpha-ESA in the presence of the antioxidant alpha-tocotrienol (20 micromol/L), the growth inhibition and apoptosis effects of alpha-ESA were lost. An AMP-activated protein kinase inhibitor (Dorsomorphin) was also able to partially abrogate the effects of alpha-ESA, whereas a caspase inhibitor (BOC-D-FMK) did not. These results illustrate that alpha-ESA can block breast cancer cell proliferation and induce apoptosis through a mechanism that may be oxidation dependent.
منابع مشابه
Cancer Prevention Research Eleostearic Acid Inhibits Breast Cancer Proliferation by Means of an Oxidation-Dependent Mechanism
Eleostearic acid (α-ESA) is a conjugated linolenic acid that makes up ∼60% of Momordica charantia (bitter melon) seed oil. Prior work found that water extract from bitter melon was able to inhibit breast cancer. Here, we investigated effects of α-ESA on both estrogen receptor (ER)–negative MDA-MB-231 (MDA-wt) and ER-positive MDA-ERα7 human breast cancer cells. We found that α-ESA inhibited prol...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملTumor angiogenesis suppression by alpha-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via peroxisome proliferator-activated receptor gamma.
We have shown previously that alpha-eleostearic acid (ESA), a linolenic acid isomer with a conjugated triene system, suppresses tumor growth in vivo. In our earlier study, blood vessels were observed at the tumor surface in control mice, whereas in ESA-treated mice no such vessels were observed and the inner part of the tumor was discolored. These observations suggested that ESA might suppress ...
متن کاملΑ-eleostearic acid inhibits growth and induces apoptosis in breast cancer cells via HER2/HER3 signaling.
α-eleostearic acid (α-ESA) has been shown to possess antitumor activity in cancer cells. However, the underlying mechanism(s) remain largely unknown. The present study was designed to investigate the antitumor effect of α-ESA in breast cancer cells showing different expression levels of the human epidermal growth factor receptor 2 (HER2). α-ESA inhibited cell growth and induced apoptosis in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer prevention research
دوره 2 10 شماره
صفحات -
تاریخ انتشار 2009